Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38391932

RESUMEN

Cerebellar ataxias are a wide heterogeneous group of movement disorders. Within this broad umbrella of diseases, there are both genetics and sporadic forms. The clinical presentation of these conditions can exhibit a diverse range of symptoms across different age groups, spanning from pure cerebellar manifestations to sensory ataxia and multisystemic diseases. Over the last few decades, advancements in our understanding of genetics and molecular pathophysiology related to both dominant and recessive ataxias have propelled the field forward, paving the way for innovative therapeutic strategies aimed at preventing and arresting the progression of these diseases. Nevertheless, the rarity of certain forms of ataxia continues to pose challenges, leading to limited insights into the etiology of the disease and the identification of target pathways. Additionally, the lack of suitable models hampers efforts to comprehensively understand the molecular foundations of disease's pathophysiology and test novel therapeutic interventions. In the following review, we describe the epidemiology, symptomatology, and pathological progression of hereditary ataxia, including both the prevalent and less common forms of these diseases. Furthermore, we illustrate the diverse molecular pathways and therapeutic approaches currently undergoing investigation in both pre-clinical studies and clinical trials. Finally, we address the existing and anticipated challenges within this field, encompassing both basic research and clinical endeavors.


Asunto(s)
Ataxia Cerebelosa , Degeneraciones Espinocerebelosas , Humanos , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/patología , Ataxia/patología , Cerebelo/patología
2.
Trends Mol Med ; 30(2): 117-125, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38272714

RESUMEN

Friedreich ataxia (FA) is an inherited autosomal recessive neurodegenerative disease (NDD) characterized primarily by progressive sensory and spinocerebellar ataxia associated with hypertrophic cardiomyopathy. FA is due to an intronic GAA repeat expansion within the frataxin gene (FXN) leading to reduced levels of frataxin (FXN) which causes mitochondrial dysfunction, production of reactive oxygen species (ROS), and altered iron metabolism. To date there is no resolutive cure for FA; however, the FDA has recently approved omaveloxolone - a potent activator of nuclear factor erythroid 2-related factor 2 (NRF2) - as the first treatment for FA. We discuss herein the urgency to find a resolutive cure for NDDs that will most probably be achieved via combinatorial therapy targeting multiple disease pathways, and how omavaloxolone serves as an example for future treatments.


Asunto(s)
Cardiomiopatía Hipertrófica , Ataxia de Friedreich , Enfermedades Neurodegenerativas , Triterpenos , Humanos , Ataxia de Friedreich/tratamiento farmacológico , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Triterpenos/uso terapéutico , Frataxina
3.
Neuron ; 111(16): 2523-2543.e10, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37321222

RESUMEN

Toxic proteinaceous deposits and alterations in excitability and activity levels characterize vulnerable neuronal populations in neurodegenerative diseases. Using in vivo two-photon imaging in behaving spinocerebellar ataxia type 1 (Sca1) mice, wherein Purkinje neurons (PNs) degenerate, we identify an inhibitory circuit element (molecular layer interneurons [MLINs]) that becomes prematurely hyperexcitable, compromising sensorimotor signals in the cerebellum at early stages. Mutant MLINs express abnormally elevated parvalbumin, harbor high excitatory-to-inhibitory synaptic density, and display more numerous synaptic connections on PNs, indicating an excitation/inhibition imbalance. Chemogenetic inhibition of hyperexcitable MLINs normalizes parvalbumin expression and restores calcium signaling in Sca1 PNs. Chronic inhibition of mutant MLINs delayed PN degeneration, reduced pathology, and ameliorated motor deficits in Sca1 mice. Conserved proteomic signature of Sca1 MLINs, shared with human SCA1 interneurons, involved the higher expression of FRRS1L, implicated in AMPA receptor trafficking. We thus propose that circuit-level deficits upstream of PNs are one of the main disease triggers in SCA1.


Asunto(s)
Células de Purkinje , Ataxias Espinocerebelosas , Ratones , Humanos , Animales , Células de Purkinje/metabolismo , Parvalbúminas/metabolismo , Proteómica , Ratones Transgénicos , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Cerebelo/metabolismo , Interneuronas/metabolismo , Degeneración Nerviosa/patología , Modelos Animales de Enfermedad , Ataxina-1 , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo
4.
Front Cell Neurosci ; 17: 1086895, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006471

RESUMEN

The proper functioning of the cell clearance machinery is critical for neuronal health within the central nervous system (CNS). In normal physiological conditions, the cell clearance machinery is actively involved in the elimination of misfolded and toxic proteins throughout the lifetime of an organism. The highly conserved and regulated pathway of autophagy is one of the important processes involved in preventing and neutralizing pathogenic buildup of toxic proteins that could eventually lead to the development of neurodegenerative diseases (NDs) such as Alzheimer's disease or Amyotrophic lateral sclerosis (ALS). The most common genetic cause of ALS and frontotemporal dementia (FTD) is a hexanucleotide expansion consisting of GGGGCC (G4C2) repeats in the chromosome 9 open reading frame 72 gene (C9ORF72). These abnormally expanded repeats have been implicated in leading to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs). In this review, we discuss the normal physiological role of C9ORF72 in the autophagy-lysosome pathway (ALP), and present recent research deciphering how dysfunction of the ALP synergizes with C9ORF72 haploinsufficiency, which together with the gain of toxic mechanisms involving hexanucleotide repeat expansions and DPRs, drive the disease process. This review delves further into the interactions of C9ORF72 with RAB proteins involved in endosomal/lysosomal trafficking, and their role in regulating various steps in autophagy and lysosomal pathways. Lastly, the review aims to provide a framework for further investigations of neuronal autophagy in C9ORF72-linked ALS-FTD as well as other neurodegenerative diseases.

5.
Brain ; 146(9): 3783-3799, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36928391

RESUMEN

Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that affects motor neurons in the spinal cord, brainstem and motor cortex, leading to paralysis and eventually to death within 3-5 years of symptom onset. To date, no cure or effective therapy is available. The role of chronic endoplasmic reticulum stress in the pathophysiology of amyotrophic lateral sclerosis, as well as a potential drug target, has received increasing attention. Here, we investigated the mode of action and therapeutic effect of the endoplasmic reticulum-resident protein cerebral dopamine neurotrophic factor in three preclinical models of amyotrophic lateral sclerosis, exhibiting different disease development and aetiology: (i) the conditional choline acetyltransferase-tTA/TRE-hTDP43-M337V rat model previously described; (ii) the widely used SOD1-G93A mouse model; and (iii) a novel slow-progressive TDP43-M337V mouse model. To specifically analyse the endoplasmic reticulum stress response in motor neurons, we used three main methods: (i) primary cultures of motor neurons derived from embryonic Day 13 embryos; (ii) immunohistochemical analyses of spinal cord sections with choline acetyltransferase as spinal motor neuron marker; and (iii) quantitative polymerase chain reaction analyses of lumbar motor neurons isolated via laser microdissection. We show that intracerebroventricular administration of cerebral dopamine neurotrophic factor significantly halts the progression of the disease and improves motor behaviour in TDP43-M337V and SOD1-G93A rodent models of amyotrophic lateral sclerosis. Cerebral dopamine neurotrophic factor rescues motor neurons in vitro and in vivo from endoplasmic reticulum stress-associated cell death and its beneficial effect is independent of genetic disease aetiology. Notably, cerebral dopamine neurotrophic factor regulates the unfolded protein response initiated by transducers IRE1α, PERK and ATF6, thereby enhancing motor neuron survival. Thus, cerebral dopamine neurotrophic factor holds great promise for the design of new rational treatments for amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Ratones , Ratas , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Endorribonucleasas/metabolismo , Endorribonucleasas/farmacología , Endorribonucleasas/uso terapéutico , Superóxido Dismutasa-1/genética , Colina O-Acetiltransferasa/metabolismo , Colina O-Acetiltransferasa/farmacología , Colina O-Acetiltransferasa/uso terapéutico , Dopamina/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Neuronas Motoras/metabolismo , Estrés del Retículo Endoplásmico , Factores de Crecimiento Nervioso/metabolismo
6.
Neuropsychopharmacology ; 48(6): 877-886, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35945276

RESUMEN

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a devastating rare neurodevelopmental disease without a cure, caused by mutations of the serine/threonine kinase CDKL5 highly expressed in the forebrain. CDD is characterized by early-onset seizures, severe intellectual disabilities, autistic-like traits, sensorimotor and cortical visual impairments (CVI). The lack of an effective therapeutic strategy for CDD urgently demands the identification of novel druggable targets potentially relevant for CDD pathophysiology. To this aim, we studied Class I metabotropic glutamate receptors 5 (mGluR5) because of their important role in the neuropathological signs produced by the lack of CDKL5 in-vivo, such as defective synaptogenesis, dendritic spines formation/maturation, synaptic transmission and plasticity. Importantly, mGluR5 function strictly depends on the correct expression of the postsynaptic protein Homer1bc that we previously found atypical in the cerebral cortex of Cdkl5-/y mice. In this study, we reveal that CDKL5 loss tampers with (i) the binding strength of Homer1bc-mGluR5 complexes, (ii) the synaptic localization of mGluR5 and (iii) the mGluR5-mediated enhancement of NMDA-induced neuronal responses. Importantly, we showed that the stimulation of mGluR5 activity by administering in mice specific positive-allosteric-modulators (PAMs), i.e., 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) or RO6807794, corrected the synaptic, functional and behavioral defects shown by Cdkl5-/y mice. Notably, in the visual cortex of 2 CDD patients we found changes in synaptic organization that recapitulate those of mutant CDKL5 mice, including the reduced expression of mGluR5, suggesting that these receptors represent a promising therapeutic target for CDD.


Asunto(s)
Síndromes Epilépticos , Espasmos Infantiles , Ratones , Animales , Espasmos Infantiles/tratamiento farmacológico , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo , Síndromes Epilépticos/tratamiento farmacológico , Síndromes Epilépticos/genética , Síndromes Epilépticos/metabolismo , Neuronas/metabolismo , Modelos Animales de Enfermedad , Corteza Cerebral/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/uso terapéutico
7.
Acta Neuropathol ; 144(5): 939-966, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36121477

RESUMEN

ER stress signaling is linked to the pathophysiological and clinical disease manifestations in amyotrophic lateral sclerosis (ALS). Here, we have investigated ER stress-induced adaptive mechanisms in C9ORF72-ALS/FTD, focusing on uncovering early endogenous neuroprotective mechanisms and the crosstalk between pathological and adaptive responses in disease onset and progression. We provide evidence for the early onset of ER stress-mediated adaptive response in C9ORF72 patient-derived motoneurons (MNs), reflected by the elevated increase in GRP75 expression. These transiently increased GRP75 levels enhance ER-mitochondrial association, boosting mitochondrial function and sustaining cellular bioenergetics during the initial stage of disease, thereby counteracting early mitochondrial deficits. In C9orf72 rodent neurons, an abrupt reduction in GRP75 expression coincided with the onset of UPR, mitochondrial dysfunction and the emergence of PolyGA aggregates, which co-localize with GRP75. Similarly, the overexpression of PolyGA in WT cortical neurons or C9ORF72 patient-derived MNs led to the sequestration of GRP75 within PolyGA inclusions, resulting in mitochondrial calcium (Ca2+) uptake impairments. Corroborating these findings, we found that PolyGA aggregate-bearing human post-mortem C9ORF72 hippocampal dentate gyrus neurons not only display reduced expression of GRP75 but also exhibit GRP75 sequestration within inclusions. Sustaining high GRP75 expression in spinal C9orf72 rodent MNs specifically prevented ER stress, normalized mitochondrial function, abrogated PolyGA accumulation in spinal MNs, and ameliorated ALS-associated behavioral phenotype. Taken together, our results are in line with the notion that neurons in C9ORF72-ALS/FTD are particularly susceptible to ER-mitochondrial dysfunction and that GRP75 serves as a critical endogenous neuroprotective factor. This neuroprotective pathway, is eventually targeted by PolyGA, leading to GRP75 sequestration, and its subsequent loss of function at the MAM, compromising mitochondrial function and promoting disease onset.


Asunto(s)
Esclerosis Amiotrófica Lateral , Estrés del Retículo Endoplásmico , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Calcio/metabolismo , Demencia Frontotemporal/genética , Proteínas HSP70 de Choque Térmico , Humanos , Proteínas de la Membrana , Neuronas Motoras/patología , Polirribonucleótidos
8.
Neuron ; 108(4): 784-796.e3, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33022226

RESUMEN

Mordes et al. (2020) did not detect the survival or motor phenotypes in C9orf72 BAC transgenic mice originally described by Liu et al. (2016). We discuss methodological differences between the Mordes and Liu studies, several additional studies in which survival and motor phenotypes were found, and possible environmental and genetic effects. First, Nguyen et al. (2020) showed robust ALS/FTD phenotypes in C9-BAC versus non-transgenic (NT) mice and that α-GA1 treatment improved survival, behavior, and neurodegeneration. The groups of Gelbard and Saxena also show decreased survival of C9-BAC versus NT mice and neuropathological and behavioral deficits similar to those shown by Liu et al. (2016). Although FVB/N mice can have seizures, increases in seizure severity and death of C9 and NT animals, which may mask C9 disease phenotypes, have been observed in recent C9-500 FVB/NJ-bred cohorts. In summary, we provide an update on phenotypes seen in FVB C9-BAC mice and additional details to successfully use this model. This Matters Arising Response paper addresses the Mordes et al. (2020) Matters Arising paper, published concurrently in Neuron.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Animales , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN , Modelos Animales de Enfermedad , Demencia Frontotemporal/genética , Ratones , Ratones Transgénicos , Fenotipo
9.
J Neurosci ; 40(45): 8637-8651, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33087472

RESUMEN

Functional recovery after stroke is associated with a remapping of neural circuits. This reorganization is often associated with low-frequency, high-amplitude oscillations in the peri-infarct zone in both rodents and humans. These oscillations are reminiscent of sleep slow waves (SW) and suggestive of a role for sleep in brain plasticity that occur during stroke recovery; however, direct evidence is missing. Using a stroke model in male mice, we showed that stroke was followed by a transient increase in NREM sleep accompanied by reduced amplitude and slope of ipsilateral NREM sleep SW. We next used 5 ms optical activation of Channelrhodopsin 2-expressing pyramidal neurons, or 200 ms silencing of Archeorhodopsin T-expressing pyramidal neurons, to generate local cortical UP, or DOWN, states, respectively, both sharing similarities with spontaneous NREM SW in freely moving mice. Importantly, we found that single optogenetically evoked SW (SWopto) in the peri-infarct zone, randomly distributed during sleep, significantly improved fine motor movements of the limb corresponding to the sensorimotor stroke lesion site compared with spontaneous recovery and control conditions, while motor strength remained unchanged. In contrast, SWopto during wakefulness had no effect. Furthermore, chronic SWopto during sleep were associated with local axonal sprouting as revealed by the increase of anatomic presynaptic and postsynaptic markers in the peri-infarct zone and corresponding contralesional areas to cortical circuit reorganization during stroke recovery. These results support a role for sleep SW in cortical circuit plasticity and sensorimotor recovery after stroke and provide a clinically relevant framework for rehabilitation strategies using neuromodulation during sleep.SIGNIFICANCE STATEMENT Brain stroke is one of the leading causes of death and major disabilities in the elderly worldwide. A better understanding of the pathophysiological mechanisms underlying spontaneous brain plasticity after stroke, together with an optimization of rehabilitative strategies, are essential to improve stroke treatments. Here, we investigate the role of optogenetically induced sleep slow waves in an animal model of ischemic stroke and identify sleep as a window for poststroke intervention that promotes neuroplasticity and facilitates sensorimotor recovery.


Asunto(s)
Accidente Cerebrovascular Isquémico/fisiopatología , Plasticidad Neuronal , Sueño de Onda Lenta , Rehabilitación de Accidente Cerebrovascular , Animales , Axones/patología , Corteza Cerebral/fisiopatología , Infarto Cerebral/fisiopatología , Electroencefalografía , Accidente Cerebrovascular Isquémico/psicología , Masculino , Ratones , Ratones Endogámicos C57BL , Fuerza Muscular , Red Nerviosa/fisiopatología , Optogenética , Desempeño Psicomotor , Células Piramidales , Recuperación de la Función
10.
eNeuro ; 5(5)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30255129

RESUMEN

Rett syndrome (RTT) is caused in most cases by loss-of-function mutations in the X-linked gene encoding methyl CpG-binding protein 2 (MECP2). Understanding the pathological processes impacting sensory-motor control represents a major challenge for clinical management of individuals affected by RTT, but the underlying molecular and neuronal modifications remain unclear. We find that symptomatic male Mecp2 knockout (KO) mice show atypically elevated parvalbumin (PV) expression in both somatosensory (S1) and motor (M1) cortices together with excessive excitatory inputs converging onto PV-expressing interneurons (INs). In accordance, high-speed voltage-sensitive dye imaging shows reduced amplitude and spatial spread of synaptically induced neuronal depolarizations in S1 of Mecp2 KO mice. Moreover, motor learning-dependent changes of PV expression and structural synaptic plasticity typically occurring on PV+ INs in M1 are impaired in symptomatic Mecp2 KO mice. Finally, we find similar abnormalities of PV networks plasticity in symptomatic female Mecp2 heterozygous mice. These results indicate that in Mecp2 mutant mice the configuration of PV+ INs network is shifted toward an atypical plasticity state in relevant cortical areas compatible with the sensory-motor dysfunctions characteristics of RTT.


Asunto(s)
Interneuronas/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Plasticidad Neuronal/fisiología , Parvalbúminas/metabolismo , Síndrome de Rett/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones Noqueados , Neuronas/metabolismo , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...